Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Anal Chem ; 96(11): 4535-4543, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456422

RESUMO

This study explores the possibility of using microspatially offset Raman spectroscopy (micro-SORS) imaging to reconstruct noninvasively letters and figures hidden by opaque layers. Micro-SORS experiments were conducted on mockup samples that mimic real situations encountered in the cultural heritage field, such as sealed letters with inaccessible text and original documents. Subsurface images were obtained using both the characteristic Raman bands of the hidden compounds and their different optical properties from the remaining matrix. In the latter case, contrast obtained through observing a difference in the overall spectral intensity and fluorescence profile rather than any specific Raman bands were used to track the images within the hidden layer. This approach opens new prospects for the use of micro-SORS in heritage science, with applications in the field that include the study of objects covered by opaque overlayers not only through their Raman signatures but also through differences in their optical properties (e.g., fluorescence emission, absorption).

2.
Vaccine ; 42(7): 1506-1511, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38355318

RESUMO

Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global 'Prevent, Detect and Respond' strategy.


Assuntos
Medicamentos Falsificados , Vacinas , Humanos , Testes de Diagnóstico Rápido , Vacinas contra COVID-19 , Saúde Pública
3.
Analyst ; 149(1): 205-211, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38014742

RESUMO

There is increasing interest in the application of Raman spectroscopy in a medical setting, ranging from supporting real-time clinical decisions e.g. surgical margins to assisting pathologists with disease classification. However, there remain a number of barriers for adoption in the medical setting due to the increased complexity of probing highly heterogeneous, dynamic biological materials. This inherent challenge can also limit the deployment of higher level analytical approaches such as Artificial Intelligence (AI) including convolutional neural networks (CNN), as there is a lack of a ground truth required for training purposes i.e. in complex clinical samples. Principal component analysis (PCA) is an unsupervised data reduction approach (orthogonal linear transformation) that has been used extensively in spectroscopy for 30+ years, due to its capability to simplify analysis of complex spectroscopic data. However, due to PCA being unsupervised features will inherently appear mixed and their rank may vary between experiments. Here we propose Guided PCA (GPCA), a simple approach that allows PCA to be guided with spectral data to ensure a consistent rank of a key target moiety by the inclusion of a reference (guiding) spectrum to the data set. This simplifies analysis, increases robustness of PCA analysis and improves quantification and the limits of detection and decreases RMSE.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Análise de Componente Principal , Análise Espectral Raman/métodos
4.
Vaccine ; 41(47): 6960-6968, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37865599

RESUMO

Preventing, detecting, and responding to substandard and falsified vaccines is of critical importance for ensuring the safety, efficacy, and public trust in vaccines. This is of heightened importance in context of public health crisis, such as the COVID-19 pandemic, in which extreme world-wide shortages of vaccines provided a fertile ground for exploitation by falsifiers. Here, a proof-of-concept study explored the feasibility of using a handheld Spatially Offset Raman Spectroscopy (SORS) device to authenticate COVID-19 vaccines through rapid analysis of unopened vaccine vials. The results show that SORS can verify the chemical identity of dominant excipients non-invasively through vaccine vial walls. The ability of SORS to identify potentially falsified COVID-19 vaccines was demonstrated by measurement of surrogates for falsified vaccines contained in vaccine vials. In all cases studied, the SORS technique was able to differentiate between surrogate samples from the genuine COVISHIELD™ vaccine. The genuine vaccines tested included samples from six batches across two manufacturing sites to account for any potential variations between batches or manufacturing sites. Batch and manufacturing site variations were insignificant. In conjunction with existing security features, for example on labels and packaging, SORS provided an intrinsic molecular fingerprint of the dominant excipients of the vaccines. The technique could be extended to other COVID-19 and non-COVID-19 vaccines, as well as other liquid medicines. As handheld and portable SORS devices are commercially available and widely used for other purposes, such as airport security, they are rapidly deployable non-invasive screening tools for vaccine authentication.


Assuntos
COVID-19 , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Vacinas contra COVID-19 , Excipientes , Pandemias , COVID-19/prevenção & controle
5.
Appl Spectrosc ; 77(6): 666-681, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37194289

RESUMO

Raman spectroscopy has found its way into a wide range of applications and is successfully applied for qualitative and quantitative studies. Despite significant technical progress over the last few decades, there are still some challenges that limit its more widespread usage. This paper presents a holistic approach to addressing simultaneously the problems of fluorescence interference, sample heterogeneity, and laser-induced sample heating. Long wavelength shifted excitation Raman difference spectroscopy (SERDS) at 830 nm excitation combined with wide-area illumination and sample rotation is presented as a suitable approach for the investigation of selected wood species. Wood as a natural specimen represents a well-suited model system for our study as it is fluorescent, heterogeneous, and susceptible to laser-induced modifications. Two different subacquisition times (50 and 100 ms) and two sample rotation speeds (12 and 60 r/min) were exemplarily assessed. Results demonstrate that SERDS can effectively separate the Raman spectroscopic fingerprints of the wood species balsa, beech, birch, hickory, and pine from intense fluorescence interference. Sample rotation in conjunction with 1 mm-diameter wide-area illumination was suitable to obtain representative SERDS spectra of the wood species within 4.6 s. Using partial least squares discriminant analysis, a classification accuracy of 99.4% for the five investigated wood species was realized. This study highlights the large potential of SERDS combined with wide-area illumination and sample rotation for the effective analysis of fluorescent, heterogeneous, and thermally sensitive specimens in a wide range of application areas.


Assuntos
Análise Espectral Raman , Madeira , Análise Espectral Raman/métodos , Iluminação , Rotação , Análise Discriminante
6.
Appl Spectrosc ; 77(6): 569-582, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37097820

RESUMO

In this work we demonstrate an advanced concept of a charge-shifting charge-coupled device (CCD) read-out combined with shifted excitation Raman difference spectroscopy (SERDS) capable of operating at up to 10 kHz acquisition rates for the effective mitigation of fast-evolving interfering backgrounds in Raman spectroscopy. This rate is 10-fold faster than that achievable with an instrument we described previously and is overall 1000-fold faster than possible with conventional spectroscopic CCDs capable of operating at up to ∼10 Hz rates. The speed enhancement was realized by incorporating a periodic mask at the internal slit of an imaging spectrometer permitting a smaller shift of the charge on the CCD (8 pixels) to be required during the cyclic shifting process compared with the earlier design which employed an 80-pixel shift. The higher acquisition speed enables the more accurate sampling of the two SERDS spectral channels, enabling it to effectively tackle highly challenging situations with rapidly evolving interfering fluorescence backgrounds. The performance of the instrument is evaluated for heterogeneous fluorescent samples which are moved rapidly in front of the detection system aiming at the differentiation of chemical species and their quantification. The performance of the system is compared with that of the earlier 1 kHz design and a conventional CCD operated at its maximum rate of 5.4 Hz as previously. In all situations tested, the newly developed 10 kHz system outperformed the earlier variants. The 10 kHz instrument can benefit a number of prospective applications including: disease diagnosis where high sensitivity mapping of complex biological matrices in the presence of natural fluorescence bleaching restricts achievable limits of detection; accurate data acquisition from moving heterogeneous samples (or moving a handheld instrument in front of the sample during data acquisition) or data acquisition under varying ambient light conditions (e.g., due to casting shadows, sample or instrument movement). Other beneficial scenarios include monitoring rapidly evolving Raman signals in the presence of largely static background signals such as in situations where a heterogeneous sample is moving rapidly in front of a detection system (e.g., a conveyor belt) in the presence of static ambient light.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Espectrometria de Fluorescência/métodos
7.
Biomed Opt Express ; 14(12): 6592-6606, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420302

RESUMO

Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modeling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR) while ensuring safe laser exposure parameters required for in-vivo measurements. Experimental validation of the model was performed on both phantom samples and disks implanted postmortem to mimic the typical response to foreign bodies (formation of a fibrotic capsule around an implant). A reduction of laser exposure of over 1500-fold was achieved over previous studies whilst maintaining the same Raman collection rates and reaching the safe power density of 3 mW/mm2. The validation of this approach in a subcutaneous implant in a mouse cadaver showed a further improvement of 1.5-fold SNR, with a thickness limit of detection for the fibrotic layer of 23 µm, under the same acquisition times. In the animal body, a thickness limit of detection of 16 µm was achieved. These results demonstrate the feasibility of numerical model-based optimization for DRS, and that the technique can be improved sufficiently to be used for in-vivo measurement of collagenous capsule formation as a result of the foreign body response in murine models.

8.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499181

RESUMO

The purpose of this study is to determine whether age-related changes to tendon matrix molecules can be detected using Raman spectroscopy. Raman spectra were collected from human Achilles (n = 8) and tibialis anterior (n = 8) tendon tissue excised from young (17 ± 3 years) and old (72 ± 7 years) age groups. Normalised Raman spectra underwent principal component analysis (PCA), to objectively identify differences between age groups and tendon types. Certain Raman band intensities were correlated with levels of advanced glycation end-product (AGE) collagen crosslinks, quantified using conventional destructive biochemistry techniques. Achilles and tibialis anterior tendons in the old age group demonstrated significantly higher overall Raman intensities and fluorescence levels compared to young tendons. PCA was able to distinguish young and old age groups and different tendon types. Raman intensities differed significantly for several bands, including those previously associated with AGE crosslinks, where a significant positive correlation with biochemical measures was demonstrated. Differences in Raman spectra between old and young tendon tissue and correlation with AGE crosslinks provides the basis for quantifying age-related chemical modifications to tendon matrix molecules in intact tissue. Our results suggest that Raman spectroscopy may provide a powerful tool to assess tendon health and vitality in the future.


Assuntos
Tendão do Calcâneo , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Colágeno , Produtos Finais de Glicação Avançada , Músculo Esquelético
9.
Nanotheranostics ; 6(3): 337-349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721665

RESUMO

Detection of solid tumours through tissue- from depths relevant to humans- has been a significant challenge for biomedical Raman spectroscopy. The combined use of surface enhanced Raman scattering (SERS) imaging agents with deep Raman spectroscopy (DRS), i.e., surface enhanced deep Raman spectroscopy (SEDRS), offer prospects for overcoming such obstacles. In this study, we investigated the maximum detection depth through which the retrieval of SERS signal of a passively targeted biphenyl-4-thiol tagged gold nanoparticle (NP) imaging agent, injected subcutaneously into a mouse bearing breast cancer tumour, was possible. A compact 830 nm set-up with a hand-held probe and the flexibility of switching between offset, transmission and conventional Raman modalities was developed for this study. In vivo injection of the above SERS NP primary dose allowed surface tumour detection, whereas additional post mortem NP booster dose was required for detection of deeply seated tumours through heterogeneous animal tissue (comprising of proteins, fat, bone, organs, blood, and skin). The highest detection depth of 71 mm was probed using transmission, translating into a ~40% increase in detection depth compared to earlier reports. Such improvements in detection depth along with the inherent Raman chemical sensitivity brings SEDRS one step closer to future clinical cancer imaging technology.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Osso e Ossos , Ouro/química , Nanopartículas Metálicas/química , Camundongos , Análise Espectral Raman/métodos
10.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335735

RESUMO

The development of new effective cancer treatment methods has attracted much attention, mainly due to the limited efficacy and considerable side effects of currently used cancer treatment methods such as radiation therapy and chemotherapy. Photothermal therapy based on the use of plasmonically resonant metallic nanoparticles has emerged as a promising technique to eradicate cancer cells selectively. In this method, plasmonic nanoparticles are first preferentially uptaken by a tumor and then selectively heated by exposure to laser radiation with a specific plasmonic resonant wavelength, to destroy the tumor whilst minimizing damage to adjacent normal tissue. However, several parameters can limit the effectiveness of photothermal therapy, resulting in insufficient heating and potentially leading to cancer recurrence. One of these parameters is the patient's pain sensation during the treatment, if this is performed without use of anesthetic. Pain can restrict the level of applicable laser radiation, cause an interruption to the treatment course and, as such, affect its efficacy, as well as leading to a negative patient experience and consequential general population hesitancy to this type of therapy. Since having a comfortable and painless procedure is one of the important treatment goals in the clinic, along with its high effectiveness, and due to the relatively low number of studies devoted to this specific topic, we have compiled this review. Moreover, non-invasive and painless methods for temperature measurement during photothermal therapy (PTT), such as Raman spectroscopy and nanothermometry, will be discussed in the following. Here, we firstly outline the physical phenomena underlying the photothermal therapy, and then discuss studies devoted to photothermal cancer treatment concerning pain management and pathways for improved efficiency of photothermal therapy whilst minimizing pain experienced by the patient.

11.
Anal Chem ; 94(6): 2966-2972, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104115

RESUMO

The dye distribution within a photo-electrode is a key parameter in determining the performances of dye-sensitized photon-to-electron conversion devices, such as dye-sensitized solar cells (DSSCs). A traditional, depth profiling investigation by destructive means including cross-sectional sampling is unsuitable for large quality control applications in manufacturing processes. Therefore, a non-destructive monitoring of the dye depth profile is required, which is the first step toward a non-destructive evaluation of the internal degradation of the device in the field. Here, we present a conceptual demonstration of the ability to monitor the dye depth profile within the light active layer of DSSCs by non-destructive means with high chemical specificity using a recently developed non-destructive/non-invasive Raman method, micro-spatially offset Raman spectroscopy (micro-SORS). Micro-SORS is able to probe through turbid materials, providing the molecular identification of compounds located under the surface, without the need of resorting to a cross-sectional analysis. The study was performed on the photo-electrode of DSSCs. This represents the first demonstration of the micro-SORS concept in the solar cell area as well as, more generally, the application of micro-SORS to the thinnest layer to date. A sample set has been prepared with varying concentrations of the dye and the thickness of the matrix consisting of a titanium dioxide layer. The results showed that micro-SORS can unequivocally discriminate between the homogeneous and inhomogeneous dye depth profiles. Moreover, micro-SORS outcomes have been compared with the results obtained with destructive time-of-flight secondary ion mass spectrometry measurements. The results of the two techniques are in good agreement, confirming the reliability of micro-SORS analysis. Therefore, this study is expected to pave the way for establishing a wider and more effective monitoring capability in this important field.


Assuntos
Corantes , Estudos Transversais , Eletrodos , Reprodutibilidade dos Testes , Titânio
12.
Appl Spectrosc ; 76(7): 801-811, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35081779

RESUMO

Spatially offset Raman spectroscopy (SORS) is a powerful technique for subsurface molecular analysis of optically turbid samples. Numerical modeling of light propagation has been used to investigate opportunities for improving spectral contrast and signal to noise ratio when imaging regions of interest located 0-4.5 mm below the surface in polymer bulk material. Two- and three-dimensional modeling results demonstrate that when analyzing a certain region of interest (ROI) of finite lateral dimensions below the sample surface, offsetting both the laser source and detector in opposite directions from the central point of the ROI can increase the spectral contrast as compared to conventional SORS approach where the detector or the laser source is maintained at the central point (centered SORS). The outlined modeling results have been validated experimentally using a bulk polymer sample with a trans-stilbene ROI (cylinder) below the sample surface. The results show that modeling of the spatial configurations of laser excitation and detection points can be used to optimize the instrument configuration to achieve significant improvements (up to 2.25-fold) in performance over the conventional centered SORS. Such optimal solutions can then be implemented, for example, using robust fiber optic probes, moveable optics, or flexible spatial light modulator instruments for specific applications.


Assuntos
Lasers , Análise Espectral Raman , Polímeros , Análise Espectral Raman/métodos
13.
Anal Chem ; 93(17): 6755-6762, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886282

RESUMO

Spatially offset Raman spectroscopy (SORS) is a technique for interrogating the subsurface composition of turbid samples noninvasively. This study generically addresses a fundamental question relevant to a wide range of SORS studies, which is how deep SORS probes for any specific spatial offset when analyzing a turbid sample or, in turn, what magnitude of spatial offset one should select to probe a specific depth. This issue is addressed by using Monte Carlo simulations, under the assumption of negligible absorption, which establishes that the key parameter governing the extent of the probed zone for a point-like illumination and point-like collection SORS geometry is the reduced scattering coefficient of the medium. This can either be deduced from literature data or directly estimated from a SORS measurement by evaluating the Raman intensity profile from multiple spatial offsets. Once this is known, the extent of the probed zone can be determined for any specific SORS spatial offset using the Monte Carlo simulation results presented here. The proposed method was tested using experimental data on stratified samples by analyzing the signal detected from a thin layer that was moved through a stack of layers using both non-absorbing and absorbing samples. The proposed simple methodology provides important additional information on SORS measurements with direct relevance to a wide range of SORS applications including biomedical, pharmaceutical, security, forensics, and cultural heritage.

14.
Anal Chem ; 93(7): 3386-3392, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33573374

RESUMO

We propose a new method for estimating the reduced scattering coefficient, µs', of turbid homogeneous samples using Spatially Offset Raman Spectroscopy (SORS). The concept is based around the variation of Raman signal with SORS spatial offset that is strongly µs'-dependent, as such, permitting the determination of µs'. The evaluation is carried out under the assumptions that absorption is negligible at the laser and Raman wavelengths and µs' is approximately the same for those two wavelengths. These conditions are often satisfied for samples analyzed in the NIR region of the spectrum where SORS is traditionally deployed. Through a calibration procedure on a PTFE model sample, it was possible to estimate the µs' coefficient of different turbid samples with an error (RMSEP) below 18%. The knowledge of µs' in the NIR range is highly valuable for facilitating accurate numerical simulations to optimize illumination and collection geometries in SORS, to derive in-depth information about the properties of SORS measurements or in other photon applications, dependent on photon propagation in turbid media with general impact across fields such as biomedical, pharmaceutical, security, forensic, and cultural sciences.

15.
Appl Spectrosc ; 75(2): 156-167, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32662295

RESUMO

Obtaining molecular information deeper within optically turbid samples is valuable in many applications. However, in many cases this is challenging, in particular when the sample elicits strong laser-induced fluorescence emission. Here, we investigated the use of time-gated and micro-spatially offset Raman spectroscopy (micro-SORS) based on spectral multiplexing detection to obtain sub-surface molecular analysis and imaging for both fluorescing and non-fluorescing samples. The multiplexed spectral detection achieved with a digital micromirror device (DMD) allowed fast acquisition of the time-gated signals to enable three-dimensional Raman mapping (raster scanning in the lateral x,y plane and using time-of-flight calibration for the axial z-direction). Sub-millimeter resolution molecular depth mapping was achieved with dwell times on the order of seconds per pixel. To suppress fluorescence backgrounds and enhance Raman bands, time-gated Raman spectroscopy was combined with micro-SORS to recover Raman signals of red pigments placed behind a layer of optically turbid material. Using a defocusing micro-SORS approach, both fluorescence and Raman signals from the surface layers were further suppressed, which enhanced the Raman signals from the deeper sublayers containing the pigment. These results demonstrate that time-gated Raman spectroscopy based on spectral multiplexed detection, and in combination with micro-SORS, is a powerful technique for sub-surface molecular analysis and imaging, which may find practical applications in medical imaging, cultural heritage, forensics, and industry.

16.
Appl Spectrosc ; 75(3): 241-249, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33044086

RESUMO

The desire for portable Raman spectrometers is continuously driving the development of novel spectrometer architectures where miniaturisation can be achieved without the penalty of a poorer detection performance. Spatial heterodyne spectrometers are emerging as potential candidates for challenging the dominance of traditional grating spectrometers, thanks to their larger etendue and greater potential for miniaturisation. This paper provides a generic analytical model for estimating and comparing the detection performance of Raman spectrometers based on grating spectrometer and spatial heterodyne spectrometer designs by deriving the analytical expressions for the performance estimator (signal-to-noise ratio, SNR) for both types of spectrometers. The analysis shows that, depending on the spectral characteristics of the Raman light and on the values of some instrument-specific parameters, the ratio of the SNR estimates for the two spectrometers (RSNR) can vary as much as by two orders of magnitude. Limit cases of these equations are presented for a subset of spectral regimes which are of practical importance in real-life applications of Raman spectroscopy. In particular, under the experimental conditions where the background signal is comparable or larger than the target Raman line and shot noise is the dominant noise contribution, the value of RSNR is, to a first order of approximation, dependent solely on the relative values of each spectrometer's etendue and on the number of row pixels in the detector array. For typical values of the key instrument-specific parameters (e.g., etendue, number of pixels, spectral bandwidth), the analysis shows that spatial heterodyne spectrometer-based Raman spectrometers have the potential to compete with compact grating spectrometer designs for delivering in a much smaller footprint (10-30 times) levels of detection performance that are approximately only five to ten times poorer.

17.
Chem Soc Rev ; 50(1): 556-568, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33169761

RESUMO

In recent years, Raman spectroscopy has undergone major advancements in its ability to probe deeply through turbid media such as biological tissues. This progress has been facilitated by the advent of a range of specialist techniques based around spatially offset Raman spectroscopy (SORS) to enable non-invasive probing of living tissue through depths of up to 5 cm. This represents an improvement in depth penetration of up to two orders of magnitude compared to what can be achieved with conventional Raman methods. In combination with the inherently high molecular specificity of Raman spectroscopy, this has therefore opened up entirely new prospects for a range of new analytical applications across multiple fields including medical diagnosis and disease monitoring. This article discusses SORS and related variants of deep Raman spectroscopy such as transmission Raman spectroscopy (TRS), micro-SORS and surface enhanced spatially offset Raman spectroscopy (SESORS), and reviews the progress made in this field during the past 5 years including advances in non-invasive cancer diagnosis, monitoring of neurotransmitters, and assessment of bone disease.


Assuntos
Pesquisa Biomédica , Doenças Ósseas/diagnóstico , Neoplasias/diagnóstico , Neurotransmissores/análise , Animais , Humanos , Análise Espectral Raman
18.
Analyst ; 146(4): 1260-1267, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33336659

RESUMO

The first near infrared window in biological tissue (λ∼ 700-950 nm) is of great interest for its potential to safely deliver light based diagnosis and therapeutic interventions, especially in the burgeoning field of nano-theranostics. In this context, Raman spectroscopy is increasingly being used to provide rapid non-invasive chemical molecular analysis, including bulk tissue analysis by exploiting the near infrared window, with transmission Raman spectroscopy (TRS). The disadvantage of this approach, is that when probing depths of several centimetres self-attenuation artefacts are typically exhibited, whereby TRS spectra can suffer from relative changes in the "spectral features" due to differential absorption of Raman photons by the various constituents of biological tissues. Simply put, for a homogenous substance with increasing thickness, spectral variances occur due to the optical properties of the material and not through changes in the chemical environment. This can lead to misinterpretation of data, or features of interest become obscured due to the unwanted variance. Here we demonstrate a method to correct TRS data for this effect, which estimates the pathlengths derived from peak attenuation and uses expected optical properties to transform the data. In a validation experiment, the method reduced total Raman spectral intensity variances >5 fold, and improved specific peak ratio distortions 35×. This is an important development for TRS, Spatially Offset Raman Spectroscopy (SORS) and related techniques operating at depth in the near IR window; applicable to samples where there is large sample thickness and inter- and intra-sample thickness is variable i.e. clinical specimens from surgical procedures such as breast cancer. This solution is expected to yield lower detection limits and larger depths in future applications such as non-invasive breast cancer diagnosis in vivo.


Assuntos
Fótons , Análise Espectral Raman
19.
Analyst ; 145(23): 7623-7629, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33000803

RESUMO

Spatially offset Raman spectroscopy (SORS) allows chemical characterisation of biological tissues at depths of up to two orders of magnitude greater than conventional Raman spectroscopy. In this study, we demonstrate the use of SORS for the non-invasive prediction of depth of an inclusion within turbid media (e.g. biological tissues) using only external calibration data sets, thus extending our previous approach that required internal calibration. As with the previous methodology, the concept is based on relative changes in Raman band intensities of the inclusion that are directly related to the path length of Raman photons travelling through the medium thereby encoding the information of depth of the inclusion. However, here the calibration model is created using data only from external measurements performed at the tissue surface. This new approach facilitates a fully non-invasive methodology applicable potentially to in vivo medical diagnosis without any a priori knowledge. Monte Carlo simulations of photon propagation have been used to provide insight into the relationship between the spatial offset and the photon path lengths inside the tissues enabling one to derive a general scaling factor permitting the use of spatial offset measurements for the depth prediction. The approach was validated by predicting the depth of surface-enhanced Raman scattering (SERS) labelled nanoparticles (NPs) acting as inclusions inside a slab of ex vivo porcine tissue yielding an average root mean square error of prediction of 7.3% with respect to the overall tissue thickness. Our results pave the way for future non-invasive deep Raman spectroscopy in vivo by enabling, for example, the localisation of cancer lesions or cancer biomarkers in early disease diagnosis and targeted treatments.


Assuntos
Nanopartículas , Neoplasias , Animais , Calibragem , Método de Monte Carlo , Análise Espectral Raman , Suínos
20.
Adv Sci (Weinh) ; 7(15): 1903441, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775148

RESUMO

Nanotheranostics, which combines optical multiplexed disease detection with therapeutic monitoring in a single modality, has the potential to propel the field of nanomedicine toward genuine personalized medicine. Currently employed mainstream modalities using gold nanoparticles (AuNPs) in diagnosis and treatment are limited by a lack of specificity and potential issues associated with systemic toxicity. Light-mediated nanotheranostics offers a relatively non-invasive alternative for cancer diagnosis and treatment by using AuNPs of specific shapes and sizes that absorb near infrared (NIR) light, inducing plasmon resonance for enhanced tumor detection and generating localized heat for tumor ablation. Over the last decade, significant progress has been made in the field of nanotheranostics, however the main biological and translational barriers to nanotheranostics leading to a new paradigm in anti-cancer nanomedicine stem from the molecular complexities of cancer and an incomplete mechanistic understanding of utilization of Au-NPs in living systems. This work provides a comprehensive overview on the biological, physical and translational barriers facing the development of nanotheranostics. It will also summarise the recent advances in engineering specific AuNPs, their unique characteristics and, importantly, tunability to achieve the desired optical/photothermal properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...